

CTFROOM Internship (IT Infrastructure & Cyber Engineering Intern)

From:

Name: Mburu Karanja

Email ID: mburujkaranja@gmail.com

Phone no. : +254797605689

Total Flags Captured: 8 out of 8 (Full Score Leaderboard)

Question 1

Question -1 (10 points) VGhpcyBpcyB0aGUgMXN0IHNpbXBsZSB
mbGFn

Question -2 (15 points) VGhpcyBpcyB0aGUgMm5kIHNpbXBsZSB
mbGFn

Question -3 (15 points) 2.4.49

Question -4 (25 points) CVE-2021-41773

Question -5 (25 points) VGhpcyBpcyB0aGUgM3JkICBzaW1wbGUg
ZmxhZw==

Question -6 (25 points) RmxhZyA0IEhhYmVtdXMgSGFja2Ft

Question -7 (30 points) 90c441de1fda431d46b903b6e1f67a85

Question -8 (25 points) 6486521fb0060ec91e4f37e4b8f450ca

While investigating the defaced website, I inspected the HTML source code.

The first flag was hidden in the source code of the website as a comment. It looked like this:

This is actually a secret code written in base64. When we change it back to normal text, it reveals
the flag. This is the 1st simple flag

Question 2

While still in the code, I noticed a hardcoded reference to another js file named myconclave.js, it
was not linked directly on the page.

I copied this URL and added it to the existing base URL of the website.

This led me to a page containing the 2nd flag.

Question 3

I used a tool called curl to ask the website what kind of server it was running on. HTTP headers
confirmed the web server running:
Apache/2.4.49 (Unix)

This tells us the website is using an Apache web server on a Unix system

Question 4

After knowing the server type, I googled what known weaknesses (called CVEs) Apache 2.4.49
has. It turns out this version is known to have some security holes that hackers can use to break
in. A path traversal and remote code execution vulnerability affecting Apache HTTP Server
2.4.49 on Unix systems.

Question 5

I used a script which crafted HTTP requests targeting cgi-bin, and executed shell commands
remotely. The script gave me access to the server’s command line, which is like getting inside
the system to see and run commands. I looked around and found a special file called /checkme.
When I opened it, I found another base64 secret:
VGhpcyBpcyB0aGUgM3JkICBzaW1wbGUgZmxhZw==

Question 6
Using crafted HTTP requests targeting cgi-bin scripts, I executed shell commands remotely.

This allowed reading sensitive files and directory traversal to execute arbitrary commands.

https://github.com/thehackersbrain/CVE-2021-41773/blob/main/exploit.py

From the shell, I enumerated system files:

/etc/passwd was read, revealing standard system accounts plus a modified user entry:

Habemus-Hackam:RmxhZyA0IEhhYmVtdXMgSGFja2Ft

Decoding the password field base64 yielded:
 “Flag 4 Habemus Hackam”

This indicated the attacker’s presence and privilege escalation attempts.

Question 7

I ran a command to check the MD5 checksum of the main webpage file index.html in the path
given. The MD5 checksum is like a fingerprint for a file. The hash I found was:
90c441de1fda431d46b903b6e1f67a85

Question 8

index.html and ransom-index.html share the same hash 90c441de1fda431d46b903b6e1f67a85,
so ransom-index.html is likely the defaced file. The attacker replaced the homepage with a
defaced version named ransom-index.html.

The backup candidate is then index.bk and index.html.save.

Between them, index.bk and index.html.save have different hashes, so one is likely the original
backup. Since I wasn’t sure which file was the original backup, I tested the MD5 hashes of both
index.html.save and index.bk . I started with index.html.save, but it turned out to be incorrect,
making the latter to be correct.

Eradication recommendations
Ensure timely patch management and vulnerability scanning.
Disable or restrict access to CGI scripts unless necessary.
Remove debug or test code and source leaks from production.
Implement Web Application Firewalls (WAF) to block known exploit patterns.
Adopt file integrity monitoring for sensitive web directories.
Conduct regular security training for developers and system administrators.

Conclusion
This CTF was a full-spectrum offensive simulation designed to emulate real-world cyber threats
against critical infrastructure. From initial reconnaissance to full system compromise. My role in
this challenge was to identify how the website got hacked. I started by checking the HTML
source code. Then I noticed the server was running Apache 2.4.49, which has a known
vulnerability. I used an exploit that gave me shell access to the system. While exploring the files,
I realized that index.html had been replaced with ransom-index.html, both having the same MD5
hash. I compared backups like index.bk and index.html.save to figure out what the original
homepage looked like. This process helped me understand the exact steps the attacker took to
deface the site.

