¢ TFROOM

Hack « Learn - Upskill

www.ctfroom.com

CTFROOM Internship (IT Infrastructure & Cyber Engineering Intern)

From:

Name: Mburu Karanja

Email ID: mburujkaranja@gmail.com

Phone no. : +254797605689

Total Flags Captured: 8 out of 8 (Full Score Leaderboard)

Question -1 (10 points) VGhpcyBpcyB0aGUgMXNOIHNpbXBsZSB
mbGFn

Question -2 (15 points) VGhpcyBpcyB0aGUgMmSkIHNpbXBsZSB
mbGFn

Question -3 (15 points) 2.4.49

Question -4 (25 points) CVE-2021-41773

Question -5 (25 points) VGhpcyBpcyB0aGUgM3JkICBzaW1wbGUg
ZmxhZw==

Question -6 (25 points) RmxhZyAOIEhhYmVtdXMgSGFja2Ft

Question -7 (30 points) 90c441delfda431d46b903b6e1167a85

Question -8 (25 points) 64865211tb0060ec91e4137e4b81450ca

Question 1

During your forensic sweep, you discover that bad
development practices have left behind bread crumbs, hints
on the website. Leverage this to uncover the first flag. Enclose
yvour answer in flag{flagtext} eg flag{abcdef}

While investigating the defaced website, I inspected the HTML source code.

The first flag was hidden in the source code of the website as a comment. It looked like this:
{label tor="f1le >Attach Document {Uptional):</label><pr>
<input type="1ile" id="+ile" name="tile">

</fdiv>
<input type="submit" value="Submit Prayer Request">
</form>
</fdiv>
<script src="myconclave.js"><{/script>
<h3>Latest News</h3>

Pope's Worldwide Prayer Hetwork</1i>
¢li>Tubilaeum 20825<¢/11>
Peter’'s Pence</1i>
<ful>
</div>

(fbody)(!——VthcprcyB@aGUgMXM@IHMprBSZSmeGFd>
</html>
--></html>

This is actually a secret code written in base64. When we change it back to normal text, it reveals
the flag. This is the Ist simple flag

Question 2

Attackers often analyze libraries, external scripts, and other
third-party assets linked in the application for vulnerabilities
or misconfigurations. Leverage this to uncover thesecond flag.

While still in the code, I noticed a hardcoded reference to another js file named myconclave.js, it
was not linked directly on the page.

¢script src="myconclave.js"></script>

I copied this URL and added it to the existing base URL of the website.

& @ @ http://3.82.186.35:8080/myconclave.js
3 NegloCapucha [] hacker.org/git.. @ duckduckgo.co...

VGhpcyBpcyBBaGUgMmSk IHNpbXBsZSBmbGFn

This led me to a page containing the 2nd flag.

Question 3

Threat actors always start with reconnaissance. ldentify the exact
numerical version of the web server running on this system

I used a tool called curl to ask the website what kind of server it was running on. HTTP headers

confirmed the web server running:
Apache/2.4.49 (Unix)

This tells us the website is using an Apache web server on a Unix system

Question 4

Following recon, adversaries move to exploitation. Based on the available
evidence and artifacts, determine the CVE identifier that was most likely
exploited to gain unauthorized access to the web server. Ans formatis
CVE-ooex—xxxxx

After knowing the server type, I googled what known weaknesses (called CVEs) Apache 2.4.49
has. It turns out this version is known to have some security holes that hackers can use to break
in. A path traversal and remote code execution vulnerability affecting Apache HTTP Server
2.4.49 on Unix systems.

Question 5

Post-compromise, attackers often demaonstrate poor operational security.
Investigate common persistence paths, artifacts, and logs where attackers
may have left behind data. Use this analysis to find the third flag.

I used a script which crafted HTTP requests targeting cgi-bin, and executed shell commands
remotely. The script gave me access to the server’s command line, which is like getting inside
the system to see and run commands. I looked around and found a special file called /checkme.
When I opened it, I found another base64 secret:

VGhpcyBpcyB0aGUgM3JkICBzaW 1wbGUgZmxhZw==
P22

Question 6
Using crafted HTTP requests targeting cgi-bin scripts, I executed shell commands remotely.

This allowed reading sensitive files and directory traversal to execute arbitrary commands.

https://github.com/thehackersbrain/CVE-2021-41773/blob/main/exploit.py

From the shell, I enumerated system files:
/etc/passwd was read, revealing standard system accounts plus a modified user entry:
Habemus-Hackam:RmxhZyAOIEhhYmVtdXMgSGFja2Ft

Decoding the password field base64 yielded:
“Flag 4 Habemus Hackam™

This indicated the attacker’s presence and privilege escalation attempts.

Question 7

Upon visual inspection, it's evident the Vatican website has been defaced.
Compute and submit the MD5 hash of the currently defaced index.html
page to confirm this unauthorized modification.

Q » apache folder is located under /usr/local/apache2/htdocs/

I ran a command to check the MDS5 checksum of the main webpage file index.html in the path
given. The MDS5 checksum is like a fingerprint for a file. The hash I found was:
90c441de1fda431d46b903b6e1167a85

Question 8

Your final task is to locate a backup or residual copy of the original
index.html file. Calculate and report its MDb hash to assist in restoration
and comparison against the defaced version.

@ » apache folder is located under /usr/local/apache2/htdocs/

index.html and ransom-index.html share the same hash 90c441delfda431d46b903b6elf67a85,
so ransom-index.html is likely the defaced file. The attacker replaced the homepage with a
defaced version named ransom-index.html.

The backup candidate is then index.bk and index.html.save.

Between them, index.bk and index.html.save have different hashes, so one is likely the original
backup. Since I wasn’t sure which file was the original backup, I tested the MD35 hashes of both
index.html.save and index.bk . I started with index.html.save, but it turned out to be incorrect,
making the latter to be correct.

Eradication recommendations

Ensure timely patch management and vulnerability scanning.

Disable or restrict access to CGI scripts unless necessary.

Remove debug or test code and source leaks from production.

Implement Web Application Firewalls (WAF) to block known exploit patterns.
Adopt file integrity monitoring for sensitive web directories.

Conduct regular security training for developers and system administrators.

Conclusion

This CTF was a full-spectrum offensive simulation designed to emulate real-world cyber threats
against critical infrastructure. From initial reconnaissance to full system compromise. My role in
this challenge was to identify how the website got hacked. I started by checking the HTML
source code. Then I noticed the server was running Apache 2.4.49, which has a known
vulnerability. I used an exploit that gave me shell access to the system. While exploring the files,
I realized that index.html had been replaced with ransom-index.html, both having the same MD5
hash. I compared backups like index.bk and index.html.save to figure out what the original
homepage looked like. This process helped me understand the exact steps the attacker took to
deface the site.

